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Motivation

o Existence of solutions on finite time intervals 1s not convenient in applications and

in most cases we need existence on [7,, ) forany (7,,x,)e RxR". Weneed to

know some often classes of systems with global existence.

e Comparison principle 1s an important tool to estimate bounds on the solutions
without solving ODE.

e Comparison principle is variation of inequality techniques. So it can be regarded as
an extension of inequality techniques.




Global Existence

1) Linear Boundedness

Definition 5.1 f:RxR" — R" is linearly bounded if there exist ¢ >0 and »>0

such that

| f(t.x)|| <allx||[+b forall (f.x)e RxR".
Theorem 5.1 Suppose that f(#,x) 1s continuous; locally Lipschitz on RxR" and
linearly bounded. Then the unique solution x(f) of IVP has I =[t,,») for any
(t,.x,) e R™.
Proof. Suppose that 7___=[r,. ®,). We show @, ==. Since

x(f)=x,+ Lf f(s.x(s))ds .




1t 1s easy to see that

(O] |3 [+ 1| (s x(5) | ds <

xo |1+, (allx(s) | +b)ds

<(

X, \|+b(r—r0))+aj x(s) || ds.

t
t
If o, <, then

[ x(@) = (

t
x, || +b(w, —t,)) +a j x(s) || ds
Application of Gronwall inequality yields

x() || < (|| x, || +B(e, —1,))e" ™ <0

This 1s contradicted by the extensibility theorem. It concludes that @, =«. O

Remark 5.1 Even for a linear system x'= A(f)x+ h(t). where A(t). h(t)e C(R).

not necessarily bounded on (—o0,o0), so 1t 1s not necessarily linear bounded.

Although the linearly bounded 1s a bit restrictive, it 1s easy to be checked.




2) Lyapunov-like Auxiliary Condition

Theorem 5.2 Let f(z.x) be continuous and locally Lipschitz on Rx R". Suppose
that there exist an auxiliary function 7 (f.x):RxR” — R ofclass C' such that

o W (x)<V(t.x)<W,(x) where W (x)=0 with W (x)=0=x=0:

(Positive Definite)
° lﬁm W, (x) =, (Radially Unbounded):
: af-oV oV
o V(t.x)=—+—f(t.,x)<a+bW(x).
or ox

Then the unique solution x(7) of IVPhas ! =[t,.») forany (¢,.x,)eR"".

Proof. By the above auxiliary conditions, we have

Dy, x(ry) = LLXD) | OVEXD) 1)) < a4 bW, (x(1))
dt ot ox

<a+bV(t.x(t)).
Integrating this mequality yields

V(8. xX(0) <V (1. x0)+ [ (a+bV(s.x(s))ds




If 17 =[t,.®.) with @, <o, then

Vit x(6) <{V(t,,x,)+aleo, —t,)}+ bj.:o Vs, x(s))ds.
Application of Gronwall inequality gives the bound
V(t.x(t) < {a(o, —1,)+V (o, x)te” .
which implies
W (x(0) <{a(@, —t,)+V(t,, x, Ve <o (F1)
Meanwhile, it can be deduced that rlgg] | x(7)||=o0 by the extensibility theorem.

Then.

lim W, (x(7)) = |li|m_I’1rfr (x)==.

This contradicts with (F1). So 1t shows that @, =«. ©




Corollary 5.1 Let f(x) be locally Lipschitz on R". Suppose that there exist
V(x): R” > R ofclass C' such that
e J(x)=0 with V(x)=0 = x=0: (Positive Definite)

e lim V(x)==. (Radially Unbounded):

||xi|—=co

-

N def . 61
o JV(x)=——-f(t.x)<a+bV(x).
ox
Then the unique solution x(#) ofthe [VPhas I =[0,«) forany x,eR".
Proof. Since f(x) 1s free of 7, then taking V(x)=V(t.x)=W (x)=W,(x) and

t, =0 obtains the result. o

Remark 5.2 How to find a desired Lyapunov-like candidate, there 1s no systematic
way mn general. It 1s still open mm Math. However. the existence of Lyapunov-like
function is guaranteed under some reasonable mild conditions. The details will be

given in Lyapunov stability theory.



Systems with Global Existence

1) Gradient Systems
Suppose that V(x):R" — R, is a function of C°. x'=-VF(x) is called a

gradient system. where

T T
o or o (@V]
| i ox )

VFV(x) {

ox, ox,  ox,
Lemma 5.1 Suppose that V(x):R" — R, isa function of C* with lim V(x)=<0.

x|| >

Then any solution of the gradient system exists forall 1>0.

Proof. Taking derivative along trajectories of the gradient system. we have

d ov ., oV (or oV (x
Ly =2mx=— 2 ( ) | ( )Hz
dt ox ox \ ox

This implies that 77(x(7))<T"(x,) forall 7>0.Then we claim that 7__ =[0,+=).




Otherwise there exists a time @, <o st  lim |[x(f)[|=« by the extensibility
=@,

theorem.. Then, there exists {{ | —>®. as n—-» st lim V(x(r))=o. Ths

(e —ay

contradicts with V(x(¢)) <V (x,).So I___ =[0,+). This completes the proof. o

Remark 5.3 If xel/'(c)={x:V(x)=c} is a regular point (i.e. VV(x)#0). the
solution curve x(7) is perpendicular to the level surface 7 7'(¢). Since for any curve

y(H)eV 7 (c) with »(0)=x and »'(0) =y, we have

ar(y)

= V'O, =VV () - y=(VV(x). ).

:_V( (r))‘r—ﬂ




2) Hamiltonian Systems

Suppose that H(x, y):R"xR" — R., isa function of C~.

xj - V?H(x- .}‘) . .];f — —V IH('}'&& ..1"})
1s called a Hamiltonian equation, where H(x, y) 1s called a Hamiltonian function.
Since f(x.y)= (VyH(x,y), -V _H(x, y))T is locally Lipschitz by C°, so the

existence and uniqueness of solution 1s done. Suppose that (x(7). ¥(#)) 1s a solution.
Then,

d r ’

o H(x(1). (1)) =V H(x(@). y(@) x' (1) +V H(x(1). y(1))y'(1)=0.

—  H(x(#), y(t)) = const.




H(x.y) can be regarded as a Lyapunov candidate for the Hamiltonian equation. If

lim H(x.y)=. then the level set {(x.y):H(x.y)=c} 1s closed and bounded.

[|(x. ¥)|| =

We conclude that 7___ =(-o,+w) . Otherwise, there exists a time @, <

(0 >-n)st.  lLm [|(x(t). (1)) ||=. Which yields that there exist
~ (@)

t—=o, (o

(x(z,), vt N=(x,y)ellx,y):H(x,y)=c} st. Im H(x_ .y )==.

[Cxn- ¥ ndl—

However, it 1s not possible. This completes the proof. .,




3) Van der Pol Equation

¥ =g(l-x?)x"—x

1s called Van der Pol equation, where & >0 1is a small parameter. The form of
system:

=y
V=e(-xt)y-x

can be regarded as a perturbation of a particular Hamiltonian system:

X=y
V' =—x

By which we find H(x.y)= % (x*+y?) satisfying lim H(x.y)=o. which can be

([l >
taken as a Lyapunov candidate for the Van der Pol equation. Then we have

d oH oH I 0. x’=1
—H(x.v)= X'+ S=g(l-x" )y < ’ <2eH(x.v).
% (x, ) - mJ ( )) {g}_ e (x. )

By Corollary 5.1, we obtain the global existence. .




4) Dissipative Systems

Let f:R" —> R" be locally Lipschitz. Suppose that there exist ve R", and a >0,
b>0 s.t
<f(x)} x—v}ia—beHz.

Then the IVP x"= f(x). x(0)=x,, has a unique solution x(¢) for 71>0.

Proof. Taking aball B, ={xeR":|x|°< %} and a Lyapunov candidate as follows.
P)==lx v
S
satisfying ||l|im V(x) =00, we have
a

d B N _ 2 125 2
SV EO)=(/(). x-v)<a=blx|’<0 as |lx[I*>~.

This implies the global existence by Corollary 5.1.




Remark 5.4 The general definition of dissipative systems for x'= f(x) is given as
follows. If there exists a bound B >0 s.t. for any solution x(r) of x'= f(x).
x(0) = x,, there exists a sufficiently large constant 7'(x,) >0, s.t

(>T(x,) = |x()]<B.

then x'= f(x) 1s called a dissipative system. Obviously. the above system 1is

dissipative.




S) Lorentz Equations

The Lorentz equations are given by
X, =—0x,+0x,
X, =X Xy X X,

xi =x,x, —bx;
where >0, r>0 and b>1 are system parameters. (Note: when r >r, =24.74,
1t would exhibit chaotic behavior)
Taking v=(0. 0, y).where y=o+r, wehave

<f(x), X —v) =—ox; —x;—bx; +(c+r—y)x.x, +byx,

2

2 2 2 b
=—ox; —x; —bx; +byx,; < —crxf —x§ ——xf +b}/—
i 2 2

2

X

—a—b(x/+x+x])=a—>b|

]

2
. b . S
where a=bh"— and b=min {o.1. —} . So the Lorentz equations are dissipative.




Comparison Principle

1) Dini Derivative

D7) = im v(t+h)—v(t)
p .

h—0"

where v:R — R. When the right limit is unique. we have a right hand derivative as

follows.

D v(t)=lm vt + ) —v) :

h—0"

2) Comparison Lemma

Lemma 5.2 (Comparison Lemma) Consider the scalar function f(7.u) 1s
continuous and locally Lipschitz, where 1>/, and we R.If

u'(t) = f(r.u(r)). u(t,)=u,:

D(1) < f(E. (D). V(Ey) =V,

with v, <u,.then v(#) <u(r) on any compact interval 7e[7,.5]. (Homework-1)




Example 5.1 Find the bound of solution for the IVP "= f(x)=—(1+x")x.
x(0) =a without solving the equation.

Solution. There exists a unique solution on [0. ®,) for some certain @, >0 (@,

could be infinite) because f(x) 1s continuous and local Lipschitz.

Let v(#)=x(). Then w(f)eC' and V() =2x()x'(t) =—-2x" (1) —2x* (1) < 2x° (1) .
Hence,

V() <=2v(1), v(0)=a".
Now consider the IVP u'=-2u ,u(0)=a> = u(t)=a’e” . Then, by the
comparison lemma, the solution x(7) 1s defined on any compact interval

[0, 5] [0, @, ), and satisfies

[ x(D)|[=v()<e " |a|. t<[0.b].




First, we say that the above inequality holds for [0.@,) by the extensibility theorem.

Then we conclude that the mnequality holds for all 7> 0. If it were not the case, it

would be time @, <o st lim |x()|== by the extensibility theorem. However.
= oL

this is not possible because |x(7)|<e  |a|<w forall #>0. Therefore,

x()|[=v()<e " al, Vi=0. O

Example 5.2 Find the bound of solution for the IVP x'= f(t.x) =—(1+x*)x +¢€'.

x(0) =a without solving the equation. (Homework-2)




3) An Important Lemma for a Vector Function

Lemma 5.3 Suppose that x(7) e C'([a.h]) is an n-vector valued function. then
D _(|[x(r)]]) existson a<t<b and D (|| x(H)|]) < |[xX (D), a<t<b.

(Homework-3)

Remark 5.5 This lemma shows that once D _(||x(7)|[) exists, derivative sign and

norm sign can be exchanged with the inequality relation D (|| x(7)]|) < |[x'(z)]. Tt

looks seemly nothing to do with ODE. However, it 1s extremely important for ODE
with the bound estimation of solution.




4) Comparison Theorem for the Global

Theorem 5.3 (Comparison Theorem) Suppose that f(z.x) of the IVP 1s

continuous and locally Lipschitz, where te[f,,®") (@  could be infinite) and

x € R": and satisties
| @) <F@Ix). (. x) elty, 0 )x R,
and || x(7,)| <#n . where the IVP of the scalar equation
u'=F(t,u), u(t,)=n
has a unique solution u(f) for r€[r,,®"). Then, x(f) existson 7e[f,, @) and

|x(®)||<u(t) forall teft,, o).




Proof. Let v(7)=| x(¢)||. Then
D) =D, | x(0)]| < |1 x'0) | =l f (x| < F (e x(t) ) = F(t.v(1)
and v(z,)=|x(f,)| <n.Application of Lemma 5.1 (the comparison lemma) yields
| x(7) [l < u(r)
for any compact interval of [f,.»"). We conclude that |[x(f)|[<u(t) for all
t€(ty, ®"). Show by contradiction. If it were not the case, it would be a time ¢ with

ty<c<o® st lim| x(f)||=w by the extensibility theorem. But it is not possible
t—=c”

because |[x(¢)| <u(c)<». o

Remark 5.6 The result of Theorem 5.3 (Comparison Theorem) is global!! It doesn’t

matter if Lipschitz condition 1s not satisfied. However. the uniqueness of solution is
not guaranteered.




Remark 5.7 Finding u(r) 1s a key in application of this comparison theorem. For
example, F(¢, ) = au +b(Linear Equation). F(z,u)=au+bu" (Bernoulli Equation):

F(t,u)=g(t)F (u) (Wintner Theorem) and the others (DIY), u(f) can be solved.

5) Some Important Applications

Theorem 5.4 (Wintner Theorem) Suppose that in Theorem 5.3, if
| f(2.x) [ < g(@) L(l x1)).

where g(7)>0 1s continuous for 7=7, and L(u)>0 is continuous for » >0, and

satisfies

J-+oo du
= 40
wo (1)

then the solution u(#) of u'=g(t) F(u), u(t,)=u,>0, with |[x(7,)| =u, exists

forall 7>1, and satisfies || x(7)| <u(f) forall 7>7,.




Proof. By Comparison Theorem, we only need to show the existence of u(7:7,.u,)

forall r=71,. Since u(r) satisfies

[ 2Lz

if u(f) would not exist globally on 7>1,, there would be a finite escape. Then there

exists @, <o and {f } st lim u(f )=o0. Thatis,
t, O

J‘ ul(ty) d”
wo  L(u)

= J.: g(s)ds .

But. this 1s not possible because the left 1s oo and the right 1s finite. o




Theorem 5.5 For linear equations x'= A(f)x+ h(t). where A(7).h(t) € C(R). then

I__=|t,,+»), f,€R.

max

Proof. In fact,
| A@)x+ (@) [|< [ A@) [ ] x ([ + ] 2(2) ]

<max || A@) ||, [| A [[}([| x [ +1) = g(®) L(| x]) .
v du

Since L(u)=wu+1 1s continuous and locally Lipschitz, and .[0 —1:9‘3, we have
U+

the desired result by Wintner Theorem. o

Remark 5.8 You can prove Theorem 5.5 with I__ =(-o0.+) by Gronwall

mequality and the extensibility theorem. (Homework-4)




Summary

e We introduced three main methods for global existence. They are the linear
bounded, Lyaponove method and comparison method.

¢ Several important classes of systems have global existence.




Homework

1) Do Homework-1, 2, 3, 4.
2) Review today’s class.
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